Scientific Thinking and Conceptual Change: Revealing Student Thinking as a Foundation for Improving Learning Outcomes in STEM

Mark Urban-Lurain
Automated Analysis of Constructed Response Research Group
Division of Science and Mathematics Education
Michigan State University

STEM Education Day
October 20, 2010
AACR Research Group

Michigan State University
- Joseph Dauer
- Olga Eremina
- Emma Giese
- Laurissa Gulich
- Kevin Haudek
- Merle Heidemann
- Shauna Jones
- Jennifer Kaplan
- Julie C Libarkin
- Tammy Long
- Casey Lyons
- John Merrill
- Rosa Anna Moscarella
- Alan Munn
- Joyce Parker
- Brittany Shaffer
- Duncan Sibley
- Elena Bray Speth
- Mark Urban-Lurain
- Emily Geraghty Ward

The Ohio State University
- Ross Nehm
- Judy Ridgway
- Hendrick Haertig
- Minsu Ha

University of Colorado - Boulder
- Jennifer Knight

University of Washington
- Michelle Smith

Grand Valley State University
- Brittany Shaffer

Western Michigan University
- Mary Anne Sydlik
Acknowledgements

- National Science Foundation
 DUE-0736952, DUE-0243126, EHR-0314866, DUE-1022653
- Carnegie Corporation Grant #B7458
- The Vice Provost for Libraries, Computing and Technology, Michigan State University

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
At all levels, science education needs to be redefined, with much less emphasis on the memorization of science facts and terms.

Closely related changes in the introductory science courses in college, emphasizing “science as a way of knowing,” are the key to driving these reforms.

Science and the World’s Future, Bruce Alberts, MSU STEM Education Symposium
Backwards Design: Assessment to Reveal Student Thinking
Theoretic Framework: Conceptual Change

- Conceptual barriers impair students’ understanding complex processes in science
- Conceptual Change
 - Role of prior knowledge in learning
- Student ideas
 - May be identified by students’ use of language
 - *Constructed Response* questions can provide insight into student ideas
AACR Objectives

- Evaluate students’ understanding of scientific concepts
 - Create models of student thinking
- Use linguistic and statistical analysis to analyze students’ writing
 - Develop necessary libraries and resources
 - Validate by predicting expert ratings
Our Approach: Linguistic Feature-Based

- Item Construction
- Disciplinary Term Extraction
- Disciplinary Construct Identification
- Expert Scoring
- Statistical Modeling
- Student Responses
Validating by Predicting Expert Ratings
Example: Chemistry of Biology

- Evaluate students’ understanding of basic chemistry related to cellular and molecular biology
 - Free energy and acid/base chemistry

- Introductory Biology Cells and Molecules (BS111)
 - Large enrollment (400-500 / section)
 - General chemistry prerequisite
Functional Groups: Multiple Choice

Consider two small organic molecules in the cytoplasm of a cell, one with a hydroxyl group (-OH) and the other with an amino group (-NH₂). Which of these small molecules (either or both) is most likely to have an impact on the cytoplasmic pH?

35% A. Compound with amino group
45% B. Compound with hydroxyl group
 7% C. Both
 13% D. Neither

Explain your answer
The amino group can break down compounds faster and can therefore change the pH of the cytoplasm.

Has a carboxyl group, is more acidic.

The amino group is more basic and can change the pH better than the hydroxyl group.

The hydroxyl group doesn't affect the pH as much as an amino, which has a NH2.

The level of Hydrogen concentration defines the pH.

The amino group is an acid. It will cause the pH in the compound to rise.

Hydroxyl is a base.
Expert Ratings of Explanations

- Two experts rated explanations from correct answers using 3-level rubric
 - Level 1: Correct explanations of functional group chemistry (may include correct supporting reasoning)
 - 36%
 - Level 2: Partly correct explanations with errors in facts or reasoning
 - 12%
 - Level 3: Totally incorrect/irrelevant response
 - 51%

- Cronbach Alpha > .92
Predicting Expert Ratings

<table>
<thead>
<tr>
<th>Expert Rating</th>
<th>Computer Predicted Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>82.9</td>
</tr>
<tr>
<td>2</td>
<td>21.4</td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
</tr>
</tbody>
</table>

- 77% of the cases scored correctly, $p < .001$
- Expert/computer inter-rater reliability
 Intraclass correlation = 0.835
Weight Loss: Multiple Choice

You have a friend who lost 15 pounds of fat on a diet. Where did the mass go?

44% A) The mass was released as CO$_2$ and H$_2$O.
23% B) The mass was converted to energy which was used up.
21% C) The mass was converted to ATP molecules.
 9% D) The mass was broken down to amino acids and eliminated from the body.
 3% E) The mass was converted to urine and feces and eliminated from the body.

DQC question, BS 111, Fall, 2006 (N = 459)
You have a friend who lost 15 pounds of fat on a diet. Where did the mass go?
As Energy Fuel Waste Cell Urine & Feces Burned Heat Sweat ATP Bio Process Converted H2O CO2 Metabolism Calories Fat

The mass was broken down to amino acids and eliminated from the body. (9%)
The mass was converted to ATP molecules. (21%)
The mass was converted to urine and feces and eliminated from the body. (3%)
The mass converted to energy which was used up. (23%)

The mass was released as CO₂ and H₂O (44%)
Conceptual Change: Role of Prior Knowledge in Learning

Expansion and modification of a hypothetical reader’s knowledge structure.

Correct prior knowledge (black)
Newly acquired knowledge (blue)
Corrected misconceptions (red)

The mass was released as CO$_2$ and H$_2$O (44%). The mass converted to energy which was used up (23%). The mass was converted to urine and feces and eliminated from the body (3%). The mass was converted to ATP molecules (21%). The mass was broken down to amino acids and eliminated from the body (9%).
Conceptual Change: Instructional Implications

- Student ideas are heterogeneous
- Instruction should start with student ideas
- Cannot simply “replace” misconceptions

Current Work

Automated Analysis of Constructed Response Concept Inventories to Reveal Student Thinking: Forging a National Network for Innovative Assessment Methods

- CCLI - II
- MSU, OSU, CU-B, U-W, WMU
- Constructed response versions of concept inventory questions
 - Cellular metabolism
 - Genetics
 - Evolution
 - Geoscience
- Questions, libraries, text analysis packages
Future Work
Web Portal
Questions

Mark Urban-Lurain
Division of Science and Mathematics Education
Michigan State University
urban@msu.edu

aacr.crcstl.msu.edu