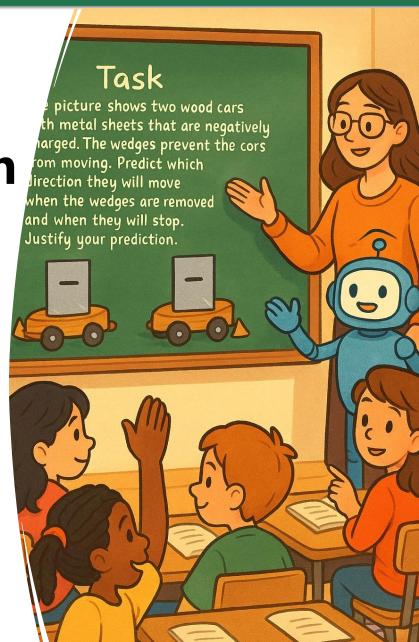


How Al supports teachers and students in science learning?

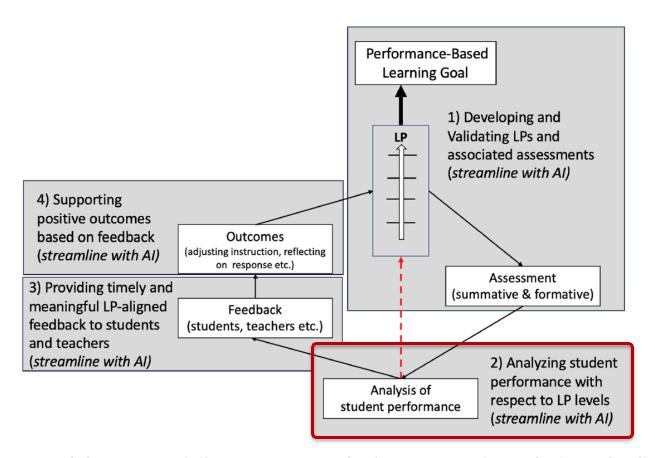
Mao-Ren Zeng (Mao-Jen Tseng)

Research Associate tsengma1@msu.edu


The Role of Al in Science Classroom

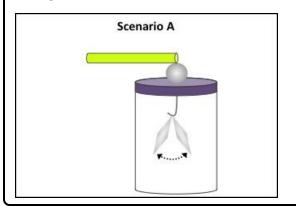
Analyzing student performance

 Assessing students' generated model by Machine Learning

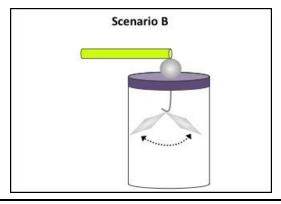

Providing Feedbacks

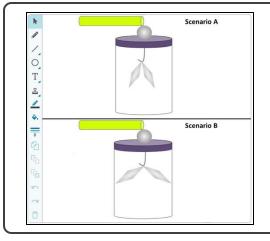
 Generating meaningful feedback by Generative AI

Al Support Across Stages of LP-Based Assessment



Kaldaras, L., Haudek, K., & Krajcik, J. (2024). Employing automatic analysis tools aligned to learning progressions to assess knowledge application and support learning in STEM. *International Journal of STEM Education, 11*, Article 57. https://doi.org/10.1186/s40594-024-00516-0




Electroscope Task

Scenario A below shows a diagram of what occurred in the video when a charged rod touched the ball.

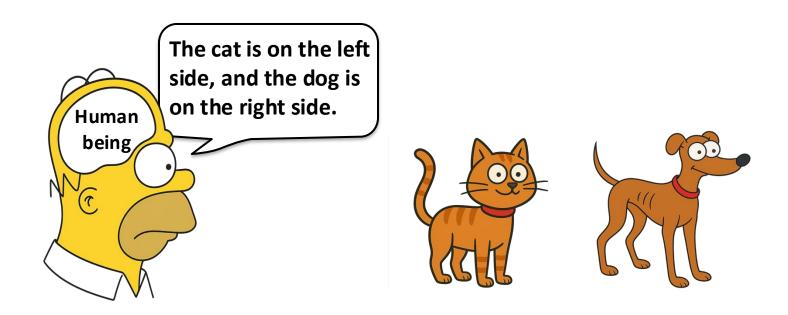
In Scenario B, a rod touches the ball and makes the leaves move much further apart.

Task 1: Modeling

Draw a model to show what the differences are in the rod and foil leaves in the two scenarios.

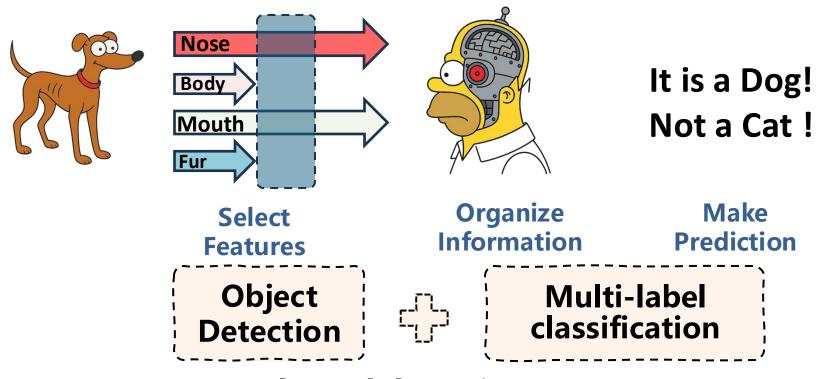
Task 2: Justification

What is different about Scenario A and Scenario B? Justify your answer.

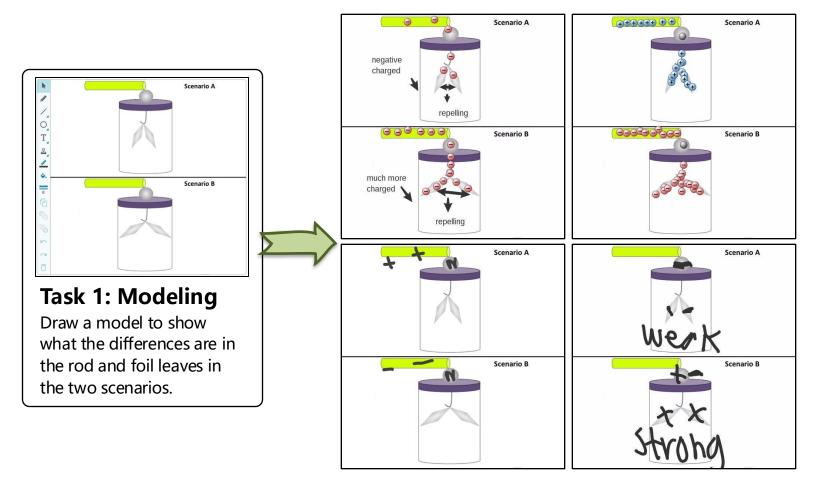

Rubric				
Category	Statement			
1	Point charge (either + or –) on the			
	rod in scenario A			
2	Point charge on the metal ball.			
	The charge must be the same type			
	as shown in the rod in scenario A.			
3	Point charge on the hook of the			
	electroscope. The charge must be			
	the same type as shown on the			
	rod in scenario A.			
4	Point Charge on the leaves of the			
	electroscope in scenario A. The			
	charge must be the same type as			
	shown in the rod in scenario A.			
5	Clearly indicates repulsive Electric			
	force causes leaves to move, by			
	using arrows or force			
	representations and pointing in			
	opposite directions between the			

leaves in scenario A.

Challenge in this study... ...

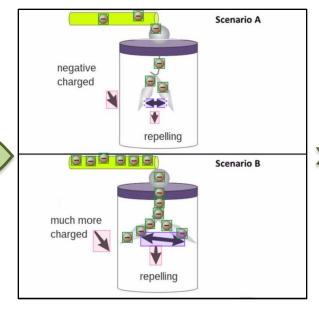

- How can machine "read" images?
- How can machine "understand" meaning of images?

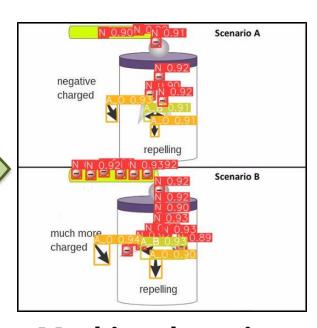
Challenge in this study... ...


- How can machine "read" images?
- How can machine "understand" meaning of images?

Dual-model scoring system

Students' generated model


What are the features of the students' generated model?



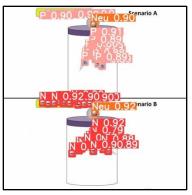
Object detection task

- Select features
- Provide the feature's Label and Location

Rubric			
Category	Statement		
1	Point charge (either + or –) on the		
	rod in scenario A		
2	Point charge on the metal ball.		
	The charge must be the same type		
	as shown in the rod in scenario A.		
3	Point charge on the hook of the		
	electroscope. The charge must be		
	the same type as shown on the		
	rod in scenario A.		
4	Point Charge on the leaves of the		
	electroscope in scenario A. The		
	charge must be the same type as		
	shown in the rod in scenario A.		
5	Clearly indicates repulsive Electric		
	force causes leaves to move, by		
	using arrows or force		
	representations and pointing in		
	opposite directions between the		
	leaves in scenario A.		

Rubric

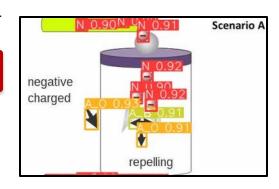
Manual labeling


Machine detection the features

Object detection task

- We organized 496 images for training machine. (training: 396 images, validation: 50 images, and testing: 50 images)
- Object detection model performed well across individual features.
 - ✓ most achieving high mAP(mean Average Precision) values (> 0.7).

	Training stage		Testin	g stage
Features	F1	mAP _{.50}	F1	mAP _{.50}
Overall performance	0.881	0.914	0.876	0.886
1. Negative charge	0.916	0.957	0.941	0.953
2. Positive charge	0.943	0.968	0.882	0.900
3. Neutral charge	0.769	0.808	1	0.995
4. One-directional arrow	0.823	0.877	0.637	0.650
5. Bidirectional arrow	0.921	0.959	0.915	0.931



Multi-label classification task

	Rubric	Human
Category	Statement	scoring
1	Point charge (either + or –) on the rod in scenario A	1
2	Point charge on the metal ball. The charge must be the same type as shown in the rod in scenario A.	1
3	Point charge on the hook of the electroscope. The charge must be the same type as shown on the rod in scenario A.	1
4	Point Charge on the leaves of the electroscope in scenario A. The charge must be the same type as shown in the rod in scenario A.	1
5	Clearly indicates repulsive Electric force causes leaves to move, by using arrows or force representations and pointing in opposite directions between the leaves in scenario A.	1

- Human scoring
- Type of Features
- Location

Category 1

Point charge (either + or –) on the rod in scenario A

Training stage			Testing stage			
Category	F1	Accuracy	Карра	F1	Accuracy	Карра
1	0.943	0.941	0.882	0.916	0.930	0.856
2	0.886	0.933	0.838	0.815	0.950	0.786
3	0.870	0.950	0.838	0.778	0.960	0.756
4	0.907	0.941	0.864	0.889	0.960	0.865
5	0.959	0.975	0.941	0.966	0.980	0.951

- ✓ Train machine
- ✓ Make prediction

Takeaway

Dual-model scoring system

Enhanced Interpretability

 The system measures a student's performance by identifying specific, meaningful symbols in their models. This symbol-level interpretability helps educators understand the specific conceptual components students are demonstrating.

Robust Transparency

 The system aligns object detection and classification with the rubric to assign meaning to findings. This provides the necessary transparency to build a robust validity argument for the Al-generated scores.

Providing meaningful information for teachers

- It provides evidence-based information that helps teachers reorganize their instruction and plan follow-up activities.
- Automated scoring reduces teachers' workload, and AI-based scoring increases teachers' willingness to adopt modeling practices in science classroom.

Acknowledgements

We are grateful to the teachers and students who partnered with us. Current & past team members:

Kevin Haudek · Joseph Krajcik · Leonora Kaldaras

Tingting Li · Selin Akgun · Clare Carlson

Wenxiu Tang · Steve Bennett · Mao-Ren Zeng

This work was supported in part through computational resources and services provided by the Institute for Cyber-Enabled Research at Michigan State University.

This material is based upon work supported by the National Science Foundation (Grant No. 2200757). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the supporting agencies

Thank You!

Kevin Haudek

Principal Investigator haudekke@msu.edu

Wenxiu Tang

Visiting Scholar tangwen4@msu.edu

Joseph Krajcik

Co-Principal Investigator krajcik@msu.edu

Steve Bennett

Research Associate benne455@msu.edu

Leonora Kaldaras

Co-Principal Investigator lkaldara@central.uh.edu

Mao-Ren Zeng

Research Associate tsengma1@msu.edu

Colleges of Education, Natural Science, Engineering, and Lyman Briggs

Office of the Provost