Insight into Student Thinking in STEM: Lessons Learned from Lexical Analysis of Student Writing

Mark Urban-Lurain
Automated Analysis of Constructed Response (AACR) Research Group

http://aacr.crcstl.msu.edu

Center for Engineering Education
College of Engineering
Michigan State University
Acknowledgements

- National Science Foundation DUE-0736952, DUE-0243126, EHR-0314866, DUE-1022653
- Carnegie Corporation Grant #B7458
- The Vice Provost for Libraries, Computing and Technology, Michigan State University

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
Forging a National Network for Innovative Assessment Methods

Michigan State University
- Joseph Dauer
- Olga Eremina
- Emma Giese
- Laurissa Gulich
- Kevin Haudek
- Merle Heidemann
- Shauna Jones
- Jennifer Kaplan
- Kristen Kostelnik
- Andrew League
- Fengji Li
- Julie C Libarkin (co-PI)
- Tammy Long (co-PI)
- Casey Lyons
- John Merrill (co-PI)
- Rosa Anna Moscarella
- Alan Munn
- Joyce Parker
- Luanna Prevost
- Brittany Shaffer
- Duncan Sibley
- Elena Bray Speth
- Mark Urban-Lurain (PI)
- Emily Geraghty Ward
- Michele Weston

The Ohio State University
- Ross Nehm (PI)
- Judy Ridgway (co-PI)
- Hendrick Haertig
- Minsu Ha

University of Colorado - Boulder
- Jennifer Knight (PI)

University of Maine
- Michelle Smith (co-PI)

Grand Valley State University
- Brittany Shaffer
- Neal Rogness

Western Michigan University
- Mary Anne Sydlik (Evaluator)

CCLI Type II (NSF DUE-1022653)
Overview

- Background
- Example
- Collaborators’ work
- Project goals and directions
- Invitation to participate
STEM Education Reform

At all levels, science education needs to be redefined, with much less emphasis on the memorization of science facts and terms.

Closely related changes in the introductory science courses in college, emphasizing “science as a way of knowing,” are the key to driving these reforms.

Science and the World’s Future, Bruce Alberts, MSU STEM Education Symposium
Assessment to Reveal Student Thinking
Theoretic Framework

- Conceptual barriers impair students’ understanding complex processes in science

- Conceptual Change
 - Role of prior knowledge in learning
 - Vosniadou, S., (2008)

- Student ideas
 - May be identified by students’ use of language
 - Pinker (2007)
 - *Constructed Response* questions can provide insight into student ideas
 - Bennett and Ward (1993); Birenbaum and Tatsouka (1987); Bridgeman (1992); Kuechler and Simkin (2010)
AACR Objectives

- Evaluate students’ understanding of scientific concepts
 - Create models of student thinking
- Use linguistic and statistical analysis to analyze students’ writing
 - Develop necessary libraries and resources
 - Validate by predicting expert ratings
Our Approach: Linguistic Feature-Based

- Item Construction
- Disciplinary Term Extraction
- Expert Scoring
- Disciplinary Construct Identification
- Statistical Modeling

Student Responses
Example: Chemistry of Biology

- Evaluate students’ understanding of basic chemistry related to cellular and molecular biology
 - Free energy and acid/base chemistry
- Introductory Biology Cells and Molecules (BS111)
 - Large enrollment (400-500 / section)
 - General chemistry prerequisite

Functional Groups: Multiple Choice

Consider two small organic molecules in the cytoplasm of a cell, one with a hydroxyl group (-OH) and the other with an amino group (-NH$_2$). Which of these small molecules (either or both) is most likely to have an impact on the cytoplasmic pH?

33% A. Compound with amino group
49% B. Compound with hydroxyl group
12% C. Both
6% D. Neither

Explain your answer
The amino group can break down compounds faster and can therefore change the pH of the cytoplasm.

Has a carboxyl group, is more acidic

The amino group is more basic and can change the pH better than the hydroxyl group.

The hydroxyl group doesn't affect the pH as much as an amino, which has a NH2.

The level of Hydrogen concentration defines the pH.

The amino group is an acid. It will cause the pH in the compound to rise.

Hydroxyl is a base.
Expert Ratings of Explanations

- Two experts rated explanations from correct answers using 3-level rubric
 - Level 1: Correct explanations of functional group chemistry (may include correct supporting reasoning)
 - 37%
 - Level 2: Partly correct explanations with errors in facts or reasoning
 - 10%
 - Level 3: Totally incorrect/irrelevant response
 - 53%

Inter-rater reliability = .90
SPSS Text Analysis for Surveys

- Conceptual categories
- Responses
- Each response classified into 0 or more categories

Extracted terms
Complexity of Student Ideas: Expert Rated 1 & 3

- Expert Rating 1
- Expert Rating 3
Predicting Expert Scoring

<table>
<thead>
<tr>
<th>Category name</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>0.758</td>
</tr>
<tr>
<td>charge</td>
<td>0.192</td>
</tr>
<tr>
<td>raise pH</td>
<td>0.254</td>
</tr>
<tr>
<td>accept hydrogen</td>
<td>0.662</td>
</tr>
<tr>
<td>acid</td>
<td>-0.509</td>
</tr>
<tr>
<td>hydroxyl</td>
<td>-0.217</td>
</tr>
<tr>
<td>amino group</td>
<td>0.287</td>
</tr>
<tr>
<td>hydrogen</td>
<td>-0.328</td>
</tr>
</tbody>
</table>

- Expert-Expert IRR = .90
- Expert-Computer IRR = .75
Photosynthesis

- Photosynthesis a complex biological process
 - Energy transformations
 - Molecular rearrangements
 - Structure/function relationships

- Existing diagnostic questions and research into student difficulties

Methods

- Exam data from introductory cell biology course (n=391)
- Each student received one MC DQC and one constructed response
- Used 2 versions of the DQC questions that allowed a cross-over design
- Lexical analysis by SPSS Text Analytics for Surveys
Q. A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing water), yet it starts from a seed that weighs less than 1 gram. Which of the following contributes most to this huge increase in biomass?

- 8% A. Absorption of mineral substances from root
- 13% B. Absorption of organic substances from soil via roots
- 59% C. Incorporation of CO2 gas from atmosphere into molecules by green leaves
- 8% D. Incorporation of H2O from soil into molecules by green leaves
- 13% E. Absorption of solar radiation into the leaf

A similar question stem using corn and same distractors was also used.
A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing the water), yet it starts from a seed that weighs less than 1 gram. Explain this huge increase in biomass.
Lexical Analysis

<table>
<thead>
<tr>
<th>Categories</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 from Air</td>
<td>through photosynthesis the tree will gain CO2 to produce O2 in this reaction, as long as the leaves are open to sunlight.</td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Energy Molecules/Electron Transfer Molecules</td>
<td></td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Roots/Soil</td>
<td></td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td></td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td></td>
</tr>
<tr>
<td>Glucose/Sugar</td>
<td></td>
</tr>
<tr>
<td>Photosynthesis</td>
<td></td>
</tr>
</tbody>
</table>
MC Selection vs. CR Categories

CR Reveals More Complexity of Student Thinking Than MC

<table>
<thead>
<tr>
<th>Category</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis</td>
<td></td>
</tr>
<tr>
<td>Any Mention of CO2</td>
<td></td>
</tr>
<tr>
<td>Glucose/Sugar</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td></td>
</tr>
<tr>
<td>Solar Radiation</td>
<td></td>
</tr>
<tr>
<td>Roots/Soil</td>
<td></td>
</tr>
<tr>
<td>Seeds</td>
<td></td>
</tr>
<tr>
<td>Energy Molecules/Elect...</td>
<td></td>
</tr>
<tr>
<td>Cell Replication/Energy...</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>CO2 from Air</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td></td>
</tr>
<tr>
<td>No Answer/No Exam</td>
<td></td>
</tr>
</tbody>
</table>

MC Selection
A. Minerals
B. Organic substances
C. CO2
D. H2O
E. Light

Concepts in constructed response coded by MC choice
Add mc %s
John Merrill, 4/1/2011
Concept Heterogeneity Revealed Through Written Explanations
Evolution and Natural Selection

- Open Response Instrument (ORI) and Evolutionary Gain and Loss Test (EGALT)
- Construct-grounded approach
 - 3 “Core Concepts”
 - Variation
 - Heritability of variation
 - Differential survival/reproduction
 - 4 “Key Concepts” used by experts
 - Biotic potential
 - Natural resources
 - Differential survival
 - Change in population

Evolution and Natural Selection Compare Lexical Analysis Approaches

SPSS Text Analytics for Surveys
- Developed for open-ended web-based market research
- Supports exploratory, iterative development of lexical resources
- Manual creation of disciplinary libraries

Summarization Integrated Development Environment (SIDE)
- Developed for discourse analysis online discussions
- Machine-learning classification techniques
- “Black box”
Evolution and Natural Selection
Human Raters (HR1, HR2) vs. Computer (TA)

Core and key concepts of natural selection

Kappa values

Target
Comparing Scoring Models Across Three Student Populations
Models in Introductory Biology

- **Structure-Behavior-Function (SBF)**

 Structure ➔ Behavior ➔ Structure ➔ Behavior ➔ Structure

 Function

Models in Introductory Biology Analyze Changes in Student Models

Relationship Between Genotype and Phenotype

- DNA constructs a nucleotide sequence which is a coding section of a gene.
- Alternative version is an allele.
- Nucleotides make up the gene, which codes for amino acids.
- Amino acids synthesize the protein which determines the phenotype.
- Protein formation results in malformed vertebral formation if homozygous.
Numbers of Students Connecting Pairs of Concepts

![Bar graph showing the number of students connecting pairs of concepts between exams.](image-url)
Genetics Concept Assessment (GCA) (Smith & Knight)

- **Iterative development process**
 - Review literature
 - Interview genetics faculty and students to explore misunderstandings.
 - Develop and administer a pilot assessment.
 - Eliminate jargon, write distracters with student-supplied incorrect answers, revise easy questions.
 - Validate and revise through student interviews and input from faculty experts at several institutions.
Genetics Concept Assessment (GCA) Constructed Response Research

- Create constructed response items for persistently difficult topics
 - Nature and consequences of mutations
 - DNA content of cells
 - Allele representation on chromosomes undergoing meiosis and mitosis

- Collecting data
 - University of Washington
 - University of Colorado – Boulder
 - Michigan State University
Genetics Concept Assessment (GCA) Research Questions

- Can lexical analysis be used to accurately score genetics concept assessment questions?
- Will student responses reveal the same persistent misunderstandings if the questions are asked in a short answer format?
- Are there some genetics concepts where multiple-choice and short answer response questions are similarly effective?
Geoscience Concept Inventory (GCI) (Libarkin)

- GCI WebCenter database of 813 student alternative conceptions about Earth Systems
- GCI
 - Evaluate learning in entry-level geoscience courses
 - Correlates strongly with individual expertise in geosciences
 - Rasch analysis to compare large number of items for equivalence
Geoscience Concept Inventory
Lexical Analysis Research

- Exploring lexical analysis across diverse items to identify student misconceptions
- Role of lexical analysis in construction, revision, and validation of MC items
Lexical Ambiguity
- Domain-specific words similar to common English words

Statistics
- Random
- Association
- Correlation
- Bias
- Skew

Barrier to learning, particularly in introductory courses
Lexical Ambiguity
Random

- 49%: An occurrence that is unplanned, unexpected or haphazard
- 17% Without criteria, plan or prior knowledge
- 8% Without pattern
- 4% Without bias
Lexical Ambiguity
Random

Pre-Instruction

Post-Instruction
Project Goals and Direction
AACR

Building on Community Goals

- Create constructed-response concept inventory questions in each topic
- Create lexical resources for each topic
- Evaluate student responses using expert scoring rubrics
- Develop statistical classification functions to predict expert ratings
- Validate automated analyses
- Disseminate questions and resources
- Build community of researchers and teachers exploring these techniques
AACR
Research Questions

- Are constructed-response items always needed to uncover student thinking?
- Are lexical analysis protocols generalizable?
- What are the relative strengths and weakness of different automated analysis techniques?
- How well do these techniques predict expert scoring?
- How can text analysis inform rubric creation?
- How can linguistics enhance lexical analysis research in STEM fields?
Future Work
Web Portal
Seeking collaborators

- Pilot items and collect data
- Develop, evaluate and/or apply scoring rubrics
- Suggest other concepts, inventories or questions
- Join online discussions
Questions

Mark Urban-Lurain
Center for Engineering Education Research Research
Michigan State University
urban@msu.edu

aacr.crcstl.msu.edu